# C<sub>60</sub> Topological Isomers: Other Carbon Allotropes

# Jan Cz. Dobrowolski\*,<sup>†,‡</sup> and Aleksander P. Mazurek\*,<sup>‡</sup>

Industrial Chemistry Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland, and Drug Institute, 30-34 Chełmska Street, 00-725 Warsaw, Poland

Received: November 20, 1997; In Final Form: March 18, 1998

The structure and stability of nonlinear carbyne carbon clusters was estimated on the basis of ab initio quantum mechanical calculations. The catenane (catecarbynes), cyclic (cycarbynes), and knotted (knocarbynes) structures of closed polycarbon chains containing 60 carbon atoms are described. Comparison of the calculated <sup>13</sup>C NMR spectra with that of  $C_{60}$  fullerene provides a basis for experimental identification of  $C_{60}$  topological isomers in the mixture.

### 1. Introduction

The discovery of fullerenes<sup>1</sup> was a milestone in the understanding of possible new allotropic forms of polycarbon systems. Nevertheless, the confirmation of the existence of fullerenes did not contribute too much to the explanation of the complex spectra emitted by interstellar dust. The small carbon molecules (up to  $C_8$ ) were identified by using mass spectrometry in the early 50s,<sup>2-4</sup> and even much larger molecules were studied theoretically.<sup>5,6</sup> Now, the spectroscopy of small carbon clusters is a field of increasing interest,<sup>7-9</sup> and interaction of mediumsize cyclic carbyne molecules with lanthanium was recently observed<sup>10</sup> and studied theoretically.<sup>11-14</sup> Recently, we reported<sup>15</sup> on the possibility of the existence of another stable carbon allotrope, like cyclic  $0^{1}_{1}$  C<sub>60</sub> cycarbynes and knotted  $3_{1}$ C<sub>60</sub> knocarbynes (trefoil) (structures 1c and 1d in Figure 1, respectively; names are preceded by a numerical symbol defining a topological type of knotted or linked structure<sup>16</sup>). However, other carbyne topological isomers of C<sub>60</sub> buckminsterfullerene (structure 1e in Figure 1) are also possible. Till now various topological (carbon) isomers were described in terms of mathematical chemistry.<sup>17-26</sup>

### 2. Methods

The present ab initio calculations were carried out with the Gaussian 94<sup>27</sup> system of programs executed on an SGI supercomputer. A full optimization of all the C<sub>60</sub> molecules was done at the HF/3-21G//HF/3-21G level. Additionally, the single-point calculations were done at the MP2/3-21G//HF/3-21G, HF/DZP-HB//HF/3-21G, and MP2/3-21G//HF/3-21G levels (where DZP-HB denotes the double- $\zeta$  DZP-CGTO basis of Hansen and Bouman<sup>28</sup> composed of carbon atoms of (721/221/ 1) AO contracted to [3s3p1d]). The theoretical <sup>13</sup>C NMR chemical shifts were calculated using the CHF-GIAO approach<sup>29</sup> based on the HF/DZP-HB single-point calculations for the HF/ 3-21G optimized structures of C<sub>60</sub> molecules. The double- $\zeta$ basis set<sup>28</sup> as used here has already been shown to be efficient for chemical-shift calculations.<sup>30–33</sup>

#### 3. Results and Discussion

The results of ab initio quantum mechanical calculations performed at different theoretical levels are presented in Table



**Figure 1.** Space filling model of  $2^{2_1}$  ( $C_{30}C_{30}$ ) catecarbyne (**1a**),  $6^{3_2}$  ( $C_{20}C_{20}C_{20}$ ) catecarbyne (**1b**),  $3_1 C_{60}$  knocarbyne (trefoil) (**1c**),  $C_{60}$  cycarbyne (**1d**),  $C_{60}$  fullerene (**1e**), and  $4_1 C_{60}$  knocarbyne (figure-eight structure) (**1f**).

1. Along with one-electron properties we calculated also the <sup>13</sup>C NMR chemical shifts as well as the IR spectra.

Here, we explored with quantum chemical methods the  $C_{60}$  catecarbynes that can be formed by linking (interlocking and threading) of the  $C_{30}$  and  $C_{20}$  carbon rings. Both the  $2_1$  catecarbyne ( $C_{30}C_{30}$ ) and  $6_2^3$  catecarbyne ( $C_{20}C_{20}C_{20}$ ) structures might exist under special conditions.

It is interesting that in the case of the  $2_1 C_{60}$  catecarbyne ( $C_{30}C_{30}$ ) (structure **1a** in Figure 1) the interlocking of the two  $C_{30}$  rings requires only a very small energy investment when compared to the separated  $C_{30}$  subunits. The repulsion increases significantly for the  $6_{2}^3$  catecarbyne ( $C_{20}C_{20}C_{20}$ ) (structure **1b** in Figure 1) but is expected to decline for the  $6_{2}^3$  ( $C_{30}C_{30}C_{30}$ ),  $6_{2}^3$  ( $C_{40}C_{40}C_{40}$ ), and higher analogues. The counterpoise correction for BSSE is presented in Table 2. However, on the basis of thermodynamics only, it would seem that in reality the observation of the  $C_{60}$  carbyne topological isomers is unlikely, but it is well-known that diamond under normal conditions is thermodynamically unstable.<sup>34</sup>

Data presented in Table 3 clearly indicate the NMR spectral features that can be used to distinguish and identify the hypothetical carbon allotropes experimentally. The  $C_{60}$  fullerene,  $C_{60}$  cycarbyne, and in effect  $2^{2}_{1}$  ( $C_{30}C_{30}$ ) catecarbyne yield only one NMR signal, whereas for the  $3_{1}$   $C_{60}$  knocarbyne 10 signals

<sup>&</sup>lt;sup>†</sup> Industrial Chemistry Research Institute. E-mail: janek@urania.il.waw.pl. <sup>‡</sup> Drug Institute. E-mail: paulm@urania.il.waw.pl.

TABLE 1: Total Energies (in hartrees) and Stabilization Energies<sup>*a*</sup> (in kcal/mol) for the Carbyne Topological Isomers Calculated at the Different Theoretical Levels

| molecule                                                                                                                                                                                                                                                                                                                        | HF/DZP-HB//HF/3-21G <sup>b</sup>                                                                                                                                                                                                                | HF/3-21G//HF/321-G                                                                                                                                                                                                                               | MP2/3-21G//HF/3-21G                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} C_{60} \ cycarbyne \\ 2^2_1 \left(C_{30}C_{30}\right) \ catecarbyne \\ 3_1 \ C_{60} \ knocarbyne \ (trefoil) \\ 4_1 \ C_{60} \ knocarbyne \ (figure-eight) \\ 6^3_2 \ (C_{20}C_{20}C_{20}) \ catecarbyne \\ C_{60} \ fullerene \\ C_{30} \ cycarbyne \\ C_{20} \ cycarbyne \\ C_{20} \ cycarbyne \end{array}$ | $\begin{array}{r} -2270.635\ 773\ (0.00)\\ -2270.522\ 860\ (70.85)\\ -2270.481\ 319\ (96.92)\\ -2270.335206\ (188.61)\\ -2270.176\ 907\ (287.94)\\ -2272.193\ 593\ (-963.77)\\ -1135.261\ 457\ (0.03)^c\\ -756.779\ 082\ (100.61)^d\end{array}$ | $\begin{array}{r} -2257.793\ 040\ (0.00)\\ -2257.674\ 325\ (74.49)\\ -2257.636\ 039\ (98.52)\\ -2257.490\ 355\ (189.94)\\ -2257.348\ 919\ (278.69)\\ -2259.047\ 674\ (-787.29)\\ -1128.837\ 162\ (0.00)^c\\ -752.493\ 639\ (82.83)^d\end{array}$ | $\begin{array}{r} -2263.029\ 874\ (0.00)\\ -2262.944\ 437\ (53.61)\\ -2262.934\ 791\ (59.67)\\ -2262.839\ 371\ (119.54)\\ -2262.774\ 661\ (160.148)\\ -2264.386\ 983\ (-851.60)\\ -1131.471\ 385\ (-1.05)^c\\ -754.264\ 717\ (12.23)^d\end{array}$ |
|                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |

<sup>*a*</sup> Stabization energies given in parentheses are calculated relative to the C<sub>60</sub> cycarbyne. <sup>*b*</sup> For basis set used see ref 16. <sup>*c*</sup>  $E(C_{30}C_{30}) - 2E(C_{30})$ . <sup>*d*</sup>  $E(C_{20}C_{20}C_{20}) - 3E(C_{20})$ .

 TABLE 2: Counterpoise Correction for Basis Set

 Superposition Error for Two Catecarbyne Molecules

|                     | molecule                                                                   | $\Delta E^a$ | $CP_1^b$ | $CP_2^c$ |  |  |
|---------------------|----------------------------------------------------------------------------|--------------|----------|----------|--|--|
| MP2/3-21G//HF/3-21G |                                                                            |              |          |          |  |  |
|                     | $2^{2}_{1}$ (C <sub>30</sub> C <sub>30</sub> ) catecarbyne                 | -1.05        | -0.95    | -1.05    |  |  |
|                     | $6_{2}^{3}$ (C <sub>20</sub> C <sub>20</sub> C <sub>20</sub> ) catecarbyne | 12.23        | 46.43    | 46.51    |  |  |
| HF/3-21G//HF/3-21G  |                                                                            |              |          |          |  |  |
|                     | $2^{2}_{1}$ (C <sub>30</sub> C <sub>30</sub> ) catecarbyne                 | 0.00         | -1.64    | -1.09    |  |  |
|                     | $6_{2}^{3} (C_{20}C_{20}C_{20})$ catecarbyne                               | 82.83        | 98.87    | 106.20   |  |  |
|                     |                                                                            |              |          |          |  |  |

<sup>*a*</sup>  $\Delta E = E_{AB} - (E_A + E_B)$  or  $\Delta E = E_{ABC} - (E_A + E_B + E_c)$ . In hartrees. <sup>*b*</sup> CP<sub>1</sub> =  $E_{AB} - (E^*_A + E^*_B)$  or CP<sub>1</sub> =  $E_{ABC} - (E^*_A + E^*_B + E^*_c)$ , where  $E^*$  stands for calculations in the basis of the whole system. In hartrees. <sup>*c*</sup> CP<sub>2</sub> =  $\Delta E - (E^*_A + E^*_B - (E^{**}_A + E^{**}_B))$  or CP<sub>2</sub> =  $\Delta E - (E^*_A + E^*_B + E^{**}_C)$ , where  $E^{**}$  stands for single-point calculations of the C<sub>20</sub> (or C<sub>30</sub>) subunit in its own basis only for geometry deformed in the whole system. In hartrees.

TABLE 3: <sup>13</sup>C NMR<sup>*a*</sup> Chemical Shifts (in ppm) Calculated for the C<sub>60</sub> Carbon Topological Isomers at the HF/DZP-HB// HF/3-21G Level

|                                             | no. equal     |                             |
|---------------------------------------------|---------------|-----------------------------|
| molecule                                    | signals       | chemical shift <sup>a</sup> |
| $2^{2}_{1}(C_{30}C_{30})$ catecarbyne       | 1             | 102.96                      |
| $6_{2}^{3}(C_{20}C_{20}C_{20})$ catecarbyne | 60            | 152.69-99.80                |
| 3 <sub>1</sub> C <sub>60</sub> knocarbyne   | 10            | 126.84, 125.53, 120.16,     |
|                                             |               | 119.92, 111.81,             |
|                                             |               | 104.13, 101.64,             |
|                                             |               | 89.08, 87.44, 81.92         |
| 41 C60 knocarbyne                           | 30 (doublets) | 146.60-64.65                |
| 41 C <sub>64</sub> knocarbyne               | 16            | 140.45, 140.17, 133.36,     |
|                                             |               | 130.86, 128.53,             |
|                                             |               | 125.92, 110.09,             |
|                                             |               | 110.08, 105.56,             |
|                                             |               | 102.84, 94.59, 82.24,       |
|                                             |               | 76.92, 72.61, 66.55,        |
|                                             |               | 63.07                       |
| C <sub>60</sub> cycarbyne                   | 1             | 86.02                       |
| C <sub>60</sub> fullerene                   | 1             | 169.42                      |

<sup>*a*</sup> For the method, see ref 7. <sup>*b*</sup> Chemical shifts are calculated against the <sup>13</sup>C atoms of TMS (shielding constant is 201.05 ppm).

of equal intensity should be observed. The  $4_1 C_{60}$  knocarbyne (a figure-eight structure (structure **1f** in Figure 1)) has no symmetry, but in fact, the calculated spectrum consists of 30 NMR doublets; however, the C<sub>64</sub> figure-eight structure belongs to the  $S_4$  group of symmetry. Therefore, 16 signals of equal intensity are expected (Table 3) and for the  $6_{32}^3$  (C<sub>20</sub>C<sub>20</sub>C<sub>20</sub>) catecarbyne we found 60 different signals in a large spectral range (Table 3). The level of complexity of the IR spectrum<sup>15</sup> is also a key to a solution of the fullerene cyclic, knotted, and catenane structures.

As in the case of fullerenes, both the topological isomeric  $C_{60}$  carbon structures and their heteroanalogues might have unusual properties.<sup>15</sup>

## 4. Conclusion

The topological knotted structures are known for complex biological systems.<sup>35–53</sup> Therefore, further quantum chemical investigations on hypothetical topological structures of simpler chemical molecules need to be explored.

Results of our calculations clearly show that these structures are really possible. The conversion between moderately different thermodynamic endpoints requires overcoming highenergy barriers due to the necessity of C–C bond breaking. On the other hand, the calculated NMR spectra can be helpful for interpretation of future experimental measurements.

#### **References and Notes**

(1) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. *Nature (London)* **1985**, *318*, 162.

- (2) Honig, R. E. J. Chem. Phys. 1954, 22, 126.
- (3) Chupka, W. A.; Inghram, M. G. J. Chem. Phys. 1954, 22, 1472.
- (4) Chupka, W. A.; Inghram, M. G. J. Phys. Chem. 1955, 59, 100.
- (5) Pitzer, K. S.; Clementi, E. J. Am. Chem. Soc. 1959, 81, 4477.

(6) Strickler, S. J.; Pitzer, K. S. In *Molecular Orbital in Chemistry*, *Physics and Biology*; Lowdin, Pulman, Eds.; Academic Press: New York, 1964; p 281.

(7) Szczepanski, J.; Ekern, S.; Vala, M. J. Phys. Chem. B 1997, 101, 1841.

(8) Szczepanski, J.; Wehlburg, Ch.; Vala, M. J. Phys. Chem. A 1997, 101, 7039.

(9) Wang, S. L.; Rittby, C. M. L.; Graham, W. R. M. J. Chem. Phys. 1997, 107, 6032.

(10) Shelimov, K. B.; Clemmer, D. E.; Jarrold, M. F. J. Phys. Chem. 1996, 99, 11376.

- (11) Strout, D. L.; Hall, M. B. J. Comput. Chem. 1996, 100, 18007.
- (12) Roszak, S.; Balasubraminian, K. J. Chem. Phys. 1997, 106, 158.

(13) Ayuela, A.; Seifert, G.; Schmidt, R. Z. Phys. D 1997, 41, 69.

- (14) Strout, D. L.; Hall, M. B. J. Phys. Chem. A 1998, 102, 641.
- (15) Dobrowolski, J. Cz.; Mazurek, A. P. Pol. J. Chem., in press.

(16) Rolfsen, D. Knot and Links; Publish or Perish, Inc.: Berkeley, 1976.

- (17) Ambs, W. J. Mendeleev Bull. 1953, 17 (Spring), 26.
- (18) Frisch, H. L.; Wasserman, E. J. Am. Chem. Soc. 1961, 83, 3789.

(19) Schmalz, T. G.; Seitz, W. A.; Klein, D. J.; Hite, G. E. J. Am. Chem. Soc. **1988**, *110*, 1113.

(20) Iwata, K.; Tanaka, M. J. Phys., Chem. 1992, 96, 4100.

(21) Iwata, K. J. Phys., Chem. 1992, 96, 4111.

(22) Klein, D. J. J. Chem. Inf. Comput. Sci. 1994, 34, 453.

(23) Klein, D. J.; Liu, X. Int. J. Quantum Chem. 1994, 28, 501.

(24) Suffczynski, M. Pol. J. Chem. 1995, 69, 157.

(25) Mislow, K. Croat. Chem. Acta 1996, 69, 485.

(26) Klein, D. J.; Zhu, H. In From Chemical Topology to Three-Dimensional Geometry; Balaban, A. T., Ed.; Plenum Press: New York, 1997.

(27) Frisch, M. J.; Trucks, G. W., Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzales, C.; Pople, J. A. *Gaussian 94*, Revision D.4; Gaussian, Inc.: Pittsburgh, PA, 1995.

(28) Hansen, A. E.; Bouman, T. D. J. Chem. Phys. 1985, 82, 5035.

(29) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.

(30) Barszczewicz, A.; Jaszuński, M.; Stefaniak, L. Chem. Phys. Lett. 1991, 186, 313.

- (31) Jackowski, K.; Barszczewicz, A.; Woźniak, K. Solid State Nucl. Magn. Reson. 1993, 2, 265.
- (32) Pecul, M.; Jackowski, K.; Woźniak, K.; Sadlej, J. Solid State Nucl. Magn. Reson., in press.
- (33) Mazurek, A. P.; Dobrowolski, J. Cz.; Sadlej, J. J. Mol. Struct. 1997, 436-437, 435.
- (34) Prosen, E. J.; Jessup, R. S.; Rossini, F. D. J. Res. Natl. Bur. Stand. 1944, 33, 447.
- (35) Wasserman, S. A.; Cozzarelli, N. R. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 1079.
  - (36) Spengler, S. J.; Stasiak, A.; Cozzarelli, N. R. Cell 1985, 42, 325.
  - (37) Wasserman, S. A.; Cozzarelli, N. R. Science 1986, 232, 951.
  - (38) Sumners, D. W. Stud. Phys. Theor. Chem. 1987, 51, 3.
- (39) Rayan, K. A.; Shapiro, T. A.; Rauch, C. A.; Griffith, J. D.; Englund, P. T. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 5844.
- (40) Ernst, C.; Sumners, D. W. Math. Proc. Cambridge Philos. Soc. 1990, 108, 489.
- (41) Dietrich-Buchecker, C. O.; Sauvage, J. P. Angew. Chem., Int. Ed. Engl. 1989, 28, 189.

- (42) Sumners, D. W. In The Mathematical Intelligencer; Springer-
- Verlag: Berlin, 1990; Vol. 12, p 71.
  (43) Kanaar, R.; Cozzarelli N. R. Curr. Opin. Struct. Biol. 1992, 2, 369. (44) Walba, D. M.; Homan, T. C.; Richards, R. M.; Halitwanger, R. C. New. J. Chem. 1993, 17, 661.
- (45) Rybenkov, V. V.; Cozzarelli, N. R.; Volgotskii, A. V. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5307.
- (46) Volgotskii, A. V.; Cozzarelli, N. R. J. Mol. Biol. 1993, 232, 1130. (47) Wang, H.; Su, S. M.; Seeman, N. C. J. Biomol. Struct. Dyn. 1993,
- 10, 853. (48) Tesi, M. C.; van Rensburg, E. J. J.; Orlandini, E.; Sumners, D.
- W.; Whittington, S. G. Phys. Rev. 1994, E49, 868.
- (49) Stark, W. M.; Parker, C. N.; Halford, S. E.; Boocock, M. R. Nature 1994, 368, 76.
- (50) Du, S. M.; Seeman, N. C. Biopolymers 1994, 34, 31.
- (51) Du, S. M.; Wang, H.; Tse-Dinh, Y. C.; Seeman, N. C. Biochemistry 1995, 34, 673.
- (52) Wang, H.; Di Gate, R. J.; Seeman, N. C. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 9477.
- (53) Rybenkov, V. V.; Volgotdskii, A. V.; Cozzarelli, N. R. Nucl. Acids Res.. 1997, 25, 1412.